3.6.94 \(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx\) [594]

Optimal. Leaf size=281 \[ \frac {b \left (4 a^2-5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 \left (a^2-b^2\right ) d}+\frac {\left (2 a^2-5 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 \left (a^2-b^2\right ) d}+\frac {b^2 \left (7 a^2-5 b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 (a-b) (a+b)^2 d}+\frac {\left (2 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x)}-\frac {b \left (4 a^2-5 b^2\right ) \sin (c+d x)}{a^3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \]

[Out]

b*(4*a^2-5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/(a^2
-b^2)/d+1/3*(2*a^2-5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)
)/a^2/(a^2-b^2)/d+b^2*(7*a^2-5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2
*c),2*b/(a+b),2^(1/2))/a^3/(a-b)/(a+b)^2/d+1/3*(2*a^2-5*b^2)*sin(d*x+c)/a^2/(a^2-b^2)/d/cos(d*x+c)^(3/2)+b^2*s
in(d*x+c)/a/(a^2-b^2)/d/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))-b*(4*a^2-5*b^2)*sin(d*x+c)/a^3/(a^2-b^2)/d/cos(d*x+c
)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.64, antiderivative size = 281, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2881, 3134, 3138, 2719, 3081, 2720, 2884} \begin {gather*} \frac {\left (2 a^2-5 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}+\frac {\left (2 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 d \left (a^2-b^2\right ) \cos ^{\frac {3}{2}}(c+d x)}+\frac {b \left (4 a^2-5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d \left (a^2-b^2\right )}+\frac {b^2 \left (7 a^2-5 b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d (a-b) (a+b)^2}-\frac {b \left (4 a^2-5 b^2\right ) \sin (c+d x)}{a^3 d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])^2),x]

[Out]

(b*(4*a^2 - 5*b^2)*EllipticE[(c + d*x)/2, 2])/(a^3*(a^2 - b^2)*d) + ((2*a^2 - 5*b^2)*EllipticF[(c + d*x)/2, 2]
)/(3*a^2*(a^2 - b^2)*d) + (b^2*(7*a^2 - 5*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a^3*(a - b)*(a + b)
^2*d) + ((2*a^2 - 5*b^2)*Sin[c + d*x])/(3*a^2*(a^2 - b^2)*d*Cos[c + d*x]^(3/2)) - (b*(4*a^2 - 5*b^2)*Sin[c + d
*x])/(a^3*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]) + (b^2*Sin[c + d*x])/(a*(a^2 - b^2)*d*Cos[c + d*x]^(3/2)*(a + b*Co
s[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2881

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])
^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx &=\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}+\frac {\int \frac {\frac {1}{2} \left (2 a^2-5 b^2\right )-a b \cos (c+d x)+\frac {3}{2} b^2 \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {\left (2 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x)}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}+\frac {2 \int \frac {-\frac {3}{4} b \left (4 a^2-5 b^2\right )+\frac {1}{2} a \left (a^2+2 b^2\right ) \cos (c+d x)+\frac {1}{4} b \left (2 a^2-5 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx}{3 a^2 \left (a^2-b^2\right )}\\ &=\frac {\left (2 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x)}-\frac {b \left (4 a^2-5 b^2\right ) \sin (c+d x)}{a^3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}+\frac {4 \int \frac {\frac {1}{8} \left (2 a^4+16 a^2 b^2-15 b^4\right )+\frac {1}{4} a b \left (7 a^2-10 b^2\right ) \cos (c+d x)+\frac {3}{8} b^2 \left (4 a^2-5 b^2\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 a^3 \left (a^2-b^2\right )}\\ &=\frac {\left (2 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x)}-\frac {b \left (4 a^2-5 b^2\right ) \sin (c+d x)}{a^3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}-\frac {4 \int \frac {-\frac {1}{8} b \left (2 a^4+16 a^2 b^2-15 b^4\right )-\frac {1}{8} a b^2 \left (2 a^2-5 b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 a^3 b \left (a^2-b^2\right )}+\frac {\left (b \left (4 a^2-5 b^2\right )\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac {b \left (4 a^2-5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 \left (a^2-b^2\right ) d}+\frac {\left (2 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x)}-\frac {b \left (4 a^2-5 b^2\right ) \sin (c+d x)}{a^3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}+\frac {\left (2 a^2-5 b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2 \left (a^2-b^2\right )}+\frac {\left (b^2 \left (7 a^2-5 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac {b \left (4 a^2-5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 \left (a^2-b^2\right ) d}+\frac {\left (2 a^2-5 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 \left (a^2-b^2\right ) d}+\frac {b^2 \left (7 a^2-5 b^2\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 (a-b) (a+b)^2 d}+\frac {\left (2 a^2-5 b^2\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x)}-\frac {b \left (4 a^2-5 b^2\right ) \sin (c+d x)}{a^3 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 13.50, size = 294, normalized size = 1.05 \begin {gather*} \frac {\frac {\frac {2 \left (4 a^4+44 a^2 b^2-45 b^4\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}+\frac {8 \left (7 a^3-10 a b^2\right ) \left ((a+b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{a+b}+\frac {6 \left (4 a^2-5 b^2\right ) \left (-2 a b E\left (\left .\text {ArcSin}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\text {ArcSin}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+\left (-2 a^2+b^2\right ) \Pi \left (-\frac {b}{a};\left .\text {ArcSin}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right ) \sin (c+d x)}{a \sqrt {\sin ^2(c+d x)}}}{(a-b) (a+b)}+4 \sqrt {\cos (c+d x)} \left (\frac {3 b^4 \sin (c+d x)}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}+2 (-6 b+a \sec (c+d x)) \tan (c+d x)\right )}{12 a^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])^2),x]

[Out]

(((2*(4*a^4 + 44*a^2*b^2 - 45*b^4)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (8*(7*a^3 - 10*a*b^2)*
((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(a + b) + (6*(4*a^2 - 5*b^2
)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] +
(-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*Sqrt[Sin[c + d*x]^2]))/((a
 - b)*(a + b)) + 4*Sqrt[Cos[c + d*x]]*((3*b^4*Sin[c + d*x])/((a^2 - b^2)*(a + b*Cos[c + d*x])) + 2*(-6*b + a*S
ec[c + d*x])*Tan[c + d*x]))/(12*a^3*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(980\) vs. \(2(349)=698\).
time = 0.72, size = 981, normalized size = 3.49

method result size
default \(\text {Expression too large to display}\) \(981\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*b^2/a^2*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-1/2/(a+b)/a*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(c
os(1/2*d*x+1/2*c),2^(1/2))-1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/a/(a^2-b^2)*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1
/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2
*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1
/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))+2/
a^2*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^
2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))-8*b^3/a^3/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*c
os(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c
),-2*b/(a-b),2^(1/2))-4/a^3*b/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(1/((b*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3883 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))^2),x)

[Out]

int(1/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))^2), x)

________________________________________________________________________________________